
Rethinking ACKs at the Transport Layer
Ana Custura

University of Aberdeen
Tom Jones

University of Aberdeen
Gorry Fairhurst

University of Aberdeen

Abstract—Acknowledgements are a core component of trans-
port protocols. They can send control information and be used
to receive feedback about transmission progress, to measure
responsiveness and capacity of the network path, and numerous
other purposes. This paper takes a long look at the way
acknowledgements are used across different transports and what
ACK information is actually needed in new protocol designs.
TCP’s use of ACKs has inspired the design of other Internet
transports and was used as a model for QUIC.

Index Terms—ACK, transport protocols

I. INTRODUCTION

The design of any Internet transport protocol needs to
operate safely over a wide range of path characteristics and be
robust to changes in the set of devices forming the network
path. Most transports rely on feedback from the remote
endpoint to inform the local endpoint about the success of
transmission across the path. Acknowledgments (ACKs) are
often sent as separate packets. They can have any size, but
are typically much smaller than data packets. Some transports
therefore allow the ACK information to be coalesced with
other information sent by a remote endpoint. Many transports
send data in one direction and ACKs in the opposite direction.

Many transports allow ACKs to be observed in the network.
Some devices intentionally reduce the volume/rate of ACKs
to improve performance for asymmetric paths [9]. This can
lead to network device ossification when connectivity becomes
reliant on seeing ACKs. In response, protocols, such as
QUIC [14] have been designed to encrypt and authenticate
their ACKs. This prevents in-network modification, and moti-
vates our examination of how this will impact performance.

The remainder of this paper explores how ACKs are used by
Internet transport protocols. It examines the usage of ACKs in
QUIC and suggests the present design will face performance
limits when used over asymmetric paths. It concludes with
recommendations for the design of an appropriate ACK policy
for future transports such as QUIC.

II. FUNCTIONS OF ACKNOWLEDGMENTS

Although the most familiar use-case of ACKs is to perform
retransmission or repair, the feedback of ACKs provides a
range of important transport functions [8].

ACKs are used to complete setup of a new flow by determin-
ing whether the remote endpoint accepts the communication.
This ensures both endpoints associate packets with the flow
and understand how to process packets. Many transports sup-
port negotiation, allowing endpoints to agree (acknowledge)
a set of features and parameters to configure the transport.

ACK Use-case TCP SCTP DCCP RTCP QUIC
Connection es-
tablishment

x x x x

Param. Reneg. x x x
Path estimation x x x x x
Loss detection x x x x x
ACK Vector x x x
CC x x x ? x
ACK-clocking x x
Pacing ? ? x x x

TABLE I: A summary of ACK functions by transport protocol.

This coordinates protocol state at endpoints (e.g., TCP SYN
options; SCTP INIT; DCCP feature negotiation).

ACKs have a role in estimating path characteristics. After
an endpoint has started communicating, ACKs can be used to
adjust the Round Trip Time (RTT) to track potential change
in path characteristics [8].

Most reliable transports trigger loss recovery after ACKs
fail to confirm delivery by reception. Loss could be detected
by observing the time-ordering of received ACKs (as in TCP
DupACK, RFC 5681) or by utitilising a timer [8]. Care is
needed to avoid interpreting ACK loss (e.g. under persistent
congestion) or ACK reordering, as as a signal of data loss.

Internet flows need to implement safeguards to avoid in-
appropriate impact on other flows that share resources along
a path. Reception of ACKs indicate data has successfully
traversed the network. Congestion control (CC) algorithms can
estimate a safe transmission rate from the rate of reception
of ACKs, or the volume of data acknowledged per RTT. In
general, CC benefits from frequent feedback of ACKs.

To promote more fair sharing of capacity, senders can limit
bursts in transmission (e.g. SCTP, RFC 4960). ACKs can help
to pace the forward transmission. This could be explicit (e.g.
each ACK releases new data) or implicit (i.e., ACKs drive a
rate limiter or burst-mitigation method). This needs at least
multiple updates per RTT, but can benefit from additional
understanding the timing of data received.

III. ACK POLICIES OF COMMON TRANSPORT PROTOCOLS

This section examines how ACKs are used in different
transports. Table I enumerates the protocols examined and
identifies relevant ACK functions.

A. Transmission Control Protocol (TCP)

TCP is the most popular transport protocol and currently
carries the majority of web and streaming video traffic. It
uses a sliding window to provide reliable data reception using
a cumulative ACK. This has influenced the design of later
protocols. In TCP, ACK packets are used to perform all
functions detailed in Section II.

We define the ACK Ratio (AR) as the number of packets
received to the number of ACKs sent. Early versions of TCP
sent an ACK for each received data packet, resulting in AR
1:1. While this provides ample information, it contributes 50%
of packets sent. A TCP receiver can delay sending an ACK for
up to two times the Maximum Segment Size of data [2] (AR
1:2). RFC 5681 requires Delayed ACKs to be sent within 500
ms of the arrival of a packet. However, many current receivers
use a smaller delay, e.g. 200ms or 40ms.

A TCP CC establishing the path capacity grows the con-
gestion control (CC) window cwnd [2] exponentially during
slow-start, where each received ACK increases the cwnd and
the sending rate is controlled by the ACK rate. Delaying ACKs
can reduce the rate of cwnd growth.

Since Appropriate Byte Counting (RFC 3465), CC operates
on the cumulative acknowledged bytes, not on individual
ACKs. Delayed ACKs increase the time to reach the capacity
where the delay is significant compared to the RTT. For this
reason, Delayed ACKs After Slow Start (DAASS) [1] can
revert to an AR of 1:1 during slow start. However, a TCP
receiver does not in general know which CC is used, so
cannot know when slow start has finished. There is therefore
no standard algorithm for implementing DAASS. The Linux
kernel implements a form of DAASS (TCP QUICKACK)
using AR 1:1 for at least the first 8 packets1.

ACK Delay is suspended during TCP loss recovery. Out
of sequence packets are reported using the selective acknowl-
edgement (SACK) option (RFC 2018). An ACK carries up to
3 SACK blocks, each describing gaps in the received window.
SACK improves efficiency after loss, but increases the volume
of ACKs while a receiver is awaiting retransmission.

B. The Stream Control Transport Protocol (SCTP)

SCTP (RFC 4960) offers connection-oriented multi-
streaming, and supports a number of modes, from reliable
streams like TCP, to partial reliability. Although based on
datagrams, methods resemble TCP. ACKs confirm connection
establishment and shutdown, and are used to provide relia-
bility. The SCTP initialisation (and INIT ACK) can be larger
than for TCP. SCTP follows TCP guidelines on delayed ACKs,
generating an ACK for at least every 2nd received packet.
ACK Delay is 200ms.

C. Datagram Congestion Control Protocol (DCCP)

DCCP (RFC 4340) is a datagram transport that supports
a set of CC identifiers (CCIDs) [17]. Designed after TCP,
it supports an ACK Vector option that can explicitly report

1https://linux.die.net/man/7/tcp

individual received packets. Like TCP, new connections start
with AR 1:2. A DCCP sender can adjust transport parameters
during a connection, using DCCP feature negotiation [17].
This allows a sender to change the AR.

CCID2 (RFC 4341) defines an approximately TCP-friendly
method that can adapt the AR, proving it does not exceed
cwnd/2 and must be >= 2 for a cwnd of 4 or more packets.
For each cwnd of data with l lost or marked ACK, the AR
is doubled; and is decremented for each cwnd /(AR2 −AR)
consecutive cwnds of data with no ACK loss or marking. This
does not adapt to path delays, such as queues building; and
is unable to account for the cost of link ACK transmission.
An AR more than 1:2 would increase burst sizes, unless the
sender performs pacing (RFC 4341).

D. The Real Time Protocol (RTP)

RTP (RFC 3550) is a connection-less transport for real
time media that is often sent at a target rate. RTP Control
Protocol (RTCP) provides control and signals statistics (e.g.,
loss rate and delay variance) and can be used to provide
loss recovery/repair and CC. Reports can be encrypted. RTCP
reports are often regularly sent, e.g. a randomised default of
five seconds. To reduce ACK frequency, a single packet can
carry multiple RTCP messages. The RTCP extended report
(XR) packet (RFC 3611) supports an ACK vector for less
frequent feedback (e.g., once per RTT, or each 50-200ms).

E. QUIC

QUIC is a new connection-oriented protocol being specified
by the IETF [14]. Packets have monotonically increasing num-
bers to eliminate ACK ambiguity, and provides more precise
RTT estimation [15]. Successful transmission is tracked by
feedback of cumulative ACK frames. In contrast to TCP and
DCCP, QUIC encrypts all header fields including ACKs.

IETF QUIC [14] currently recommends sending an ACK
for each alternate ACK-eliciting packet and implementing
ACK delay. This mimics the recommended policy for TCP
(AR 1:2). The default delay is 25 milliseconds (the value
used by emerging implementations such as Chromium and
Quicly). A QUIC receiver shares the ACK delay with the
sender to improve the precision of RTT calculations. QUIC
employs a CC similar to TCP, but adapted to QUIC [12].
Early specifications for QUIC allowed continuing to sending
an ACK Frame for every subsequently received packet for up
to 1/8 of an RTT after reordering. This significantly increased
the volume of ACK information, and resulted in an increase in
return traffic volume (especially significant for an asymmetric
path) and this is no longer encouraged.

QUIC has been reported to generally outperform TCP with
HTTP/2 [15], nevertheless, performance issues can arise over
paths that present different characteristics [18] [15]. We use
an experimental testbed described in Section IV, to compare
QUIC ACKs to other transport protocols. Section V compares
the results to the expected overhead.

Bytes/Packet TCP SCTP DCCP RTCP QUIC
XR

Min/No Loss 20 24 18 <<22* 26
Max/No Loss 26 24 22 22 36
Min/Loss** 52 52 39 30 53
Min/Loss*** 84 Unl Unl. Unl. Unl.

* The minimum RTCP ACK is dependent on data rate.
** Min Loss ACK size corresponds to isolated loss of a single packet.
*** Max Loss ACK size corresponds to a pattern of loss that would cause
enough received gaps to grow the ACK vector size to a full packet.

TABLE II: Estimated ACK bytes per data packet

IV. EXPERIMENTAL TESTBED METHODOLOGY

Network performance was evaluated using a Linux client
and server, and a FreeBSD router to emulate an asymmetric
path (e.g. a satellite path [18]). On these paths, the ACKs gen-
erated by forward data impact the capacity of the bottleneck
return link, and can constrain throughput.

We consider a best case scenario with 8.5Mbps/1.5Mbps
forward and return rates and an emulated delay of 600ms [18].
The return capacity depends on the weather conditions, but
importantly also on the subscriber traffic sharing a capacity
pool. This return traffic includes requests for data, but also
social media and video conferencing traffic [22] (e.g., an HD
video call using Skype is 1.5Mbps). We therefore also consider
a 100kbps scenario, representing the return path capacity
available for ACKs at a busy time of day.

When required, traffic shaping emulated a 1% forward path
packet loss. We examined the performance of three implemen-
tations of QUIC: Quicly, draft revision 27, Chromium, draft
revision 26, and PicoQUIC, draft revision 26. Experiments
transferred 10MB of forward data from server to client.
Network traces and logs were collected and stored for analysis.

The source code of Quicly and Chromium QUIC was
modified to enable AR 1:10 in addition to the default AR
1:2. The AR 1:10 for QUIC was chosen as a safe maximum
in line with IW. This AR was also recently shown by Fastly
to provide improve computational efficiency2.

V. TRANSPORT PROTOCOL OVERHEAD

The number of ACK bytes per data packet using TCP, SCTP,
DCCP, RTP and QUIC was estimated from the protocol speci-
fications. Table II summarises the computed size assuming an
Ethernet maximum packet of 1500 bytes.

A TCP connection handshake is normally less than 60B.
It can include data using Fast Open (RFC 7413), resulting
in a packet up to the MSS (e.g. a 1500B packet). A simple
TCP ACK is 40B, and the overhead for a delayed ACK is
therefore 40B/2*MSS. More frequent ACKs from DAASS can
increase this to 40B/MSS. ACK size increases to 12B when
the Timestamp Option (RFC 7323) is enabled. The ACK size
after loss further increases, by including SACK ranges (up to

2https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-
efficiency

20B of options until loss recovery completes). It is possible
for TCP to dynamically adjust the AR [19], e.g. ACK-CC
(RFC 5690) adjusts the AR to avoid return path congestion.
However, we are however not aware of wide-scale deployment.

SCTP connection packets are typically smaller than data
packets. A simple SCTP ACK comprises a common packet
header (12B) and a SACK chunk (16B with no loss), result-
ing in 28B. The minimum overhead for a delayed ACK is
28B/2*MSS. A SACK chunk consists of 0 to 65535 gap ACK
blocks, which can grow to fill a SCTP packet.

DCCP connection packets are typically smaller than data
packets. Each half-connection sends ACKs either as packets
or bundled with data packets. Each ACK comprises a Generic
Header (minimum 12B) plus ACK Number Subheader (4B)
plus IP headers. An AR 1:2 results in 16B/2*MSS (with no
reported loss). Loss/reordering can be encoded in an ACK
Vector option, covering up to 16192 packets using run-length
compression. This can grow to fill a DCCP packet.

The default RTP reporting interval results in an approximate
AR 1:2. However, the interval can be adaptive. Multimedia
traffic often does not require frequent feedback [20], for stable
and responsive CC. A simple RTCP RR packet for a single
source is 32B. An RTCP (XR) packet consists of report
blocks with a bitmap of lost and received packets. Even with
compression, the RTCP packet size can consume capacity out
of proportion with other ACK packets.

QUIC connection handshake packets are the same size as the
maximum data packet size [14]. All QUIC packets consist of a
transport header followed by frames that carry control informa-
tion and data streams. A simple ACK (a QUIC packet with just
an ACK frame) is 51B, assuming 16B for an encryption cypher
and an ACK Frame under 10B, resulting in 1.2% overhead
(including headers). A variable-length encoding is used for
non-negative integer values, with smaller values needing fewer
bytes [14], but causing the size of a cumulative ACK to grow
as more bytes are sent. A transfer that exceeds 16,384 packets,
adds 2B to each ACK and any reported ranges. Following
loss [12], QUIC ACKs carry a set of ACK range vectors. The
number of bytes to encode an ACK range could grow to fill
an entire QUIC packet, unless a smaller limit is configured.

While the size of TCP control packets (ACKs) is limited by
the TCP option space, QUIC packets carry a variety of types
of frames to coordinate connection state. ACK size therefore
varies more than for TCP. Figure 1 presents the distribution of
packet sizes (after connection setup) observed on a return path
during a 10MB forward transfer. This shows 3 different QUIC
implementations, compared to a TCP receiver. Differences in
size result from decisions around how frequently to send other
control frames. The median values are 52B for TCP, 63B for
Chromium, 68B for Quicly and 83B for PicoQUIC.

Table III presents a comparison in the number of bytes
sent on the return path by two implementations of QUIC
using AR 1:2 and AR 1:10 and Linux TCP using AR 1:2.
The total volume of ACK data is observed to be larger than
the ACK volume for TCP for the same AR. Table III and
Figure 2b also show the impact of a 1% link loss on the

No Loss
Bytes Chromium Quicly TCP
Sent 10.7 MB 10.7 MB 10.7 MB
Return (1:2) 313 KB 343 KB 242 KB

3.1% 3.4% 2.4%
Return (1:10) 76 KB 77 KB 121 KB

0.7% 0.7% 1.2%
1% Loss

Bytes Chromium Quicly TCP
Sent 10.7 MB 10.7 MB 10.7 MB
Return (1:2) 336 KB 390KB 299 KB

3.3% 3.9% 2.9%
Return (1:10) 262KB 166KB 150 KB

2.6% 1.6% 1.5%

TABLE III: Measured volume for two QUIC implementations
using AR 1:2 and 1:10, and TCP using AR 1:2, with no link
loss and 1% loss. The projected volume of ACK bytes for
TCP assumes simple ACK-Thinning that removes every other
cumulative ACK (AR 1:4).

Fig. 1: CDF of return path packet sizes measured after the first
RTT, for a 10MB transfer, with no link loss.

forward path. The small increase in volume due to SACK/ACK
Range information is evident for both QUIC and TCP. Figure 3
presents the number of ACK packets transmitted per second
during a 10MB forward transfer.

VI. ACK MODIFICATION

Although TCP specifies an AR 1:2. Stretch ACKs (a cumu-
lative ACK for more 2 TCP segments) have been observed [1]
and are are now common [7] for various reasons.

As flows increase their rate, there is typically an increase in
the ACK rate. However, many return paths are asymmetric [9].
That is, the capacity in the available return capacity is much
less than that of the forward direction, or the return path rate
is constrained by the return link technology. Forward data
can then generate more ACKs than can be carried over the
bottleneck return link, and a queue builds. A reduction in
available capacity (reduced to 100kbps) resulted in the forward
rate reducing from about 800 to about 400 packets/second
using AR 1:2 (Figure 5), corresponding to a drop from

(a) Breakdown of measured return path overhead for QUIC and TCP
during a 10MB transfer with no link loss, AR 1:2 and 1:10

(b) Breakdown of measured return path overhead for QUIC and TCP
during a 10MB transfer with 1% emulated forward path link loss,
AR 1:2 and 1:10

Fig. 2: Breakdown of return path overhead for QUIC and TCP

Fig. 3: Number of return packets/sec for TCP and Quicly using
AR 1:2 and 1:10, measured each second.

8.5Mbps to 5Mbps. If the same flow uses AR 1:10, it can
take full advantage of the 8.5Mbps capacity.

Some routers schedule data and ACKs differently from
FIFO, which changes the ordering and/or timing of ACKs.
Some other routers schedule based on packet size, although
this is discouraged [9]. Although these methods could be used
with encrypted packets, they would do so without observing
the ACK header, based only on the size of packets, and are
hence prone to mistakes.

Fig. 4: Measured cwnd over time using Quicly with AR1:2
and AR1:10, showing similar CC behaviour.

Fig. 5: Measured number of data packets/sec using Chromium
with AR1:2 and AR1:10, for a return path that is unconstrained
and a path limited to 100kbps of capacity, measured each
second.

A. ACK Filtering in the Network

For paths where the return capacity is limited or return
link transmission is ”expensive”, TCP ACK Filtering [9] has
been used to ”Thin”, redundant TCP ACKs [3]. A simple
method queues TCP ACKs for the same flow and removes all
except except the last cumulative ACK. Even a small reduction
(e.g. a factor of 2) can significantly reduce pressure on return
path capacity, and reduce queuing delay, benefiting any traffic
sharing the bottleneck. These techniques are implemented for
various links (e.g., DOCSIS [4], LTE, and WiFi [16]).

B. Performance Enhancing Proxies (PEPs)

A PEP reduces the ACK rate by using a proxy to split
the end-to-end transport into a series of network segments.
A specialised link transport protocol can then be used for
a specific network segment (e.g. radio link), resulting in a
much smaller AR. Use of a PEP relies upon observing both
data packets and ACKs. Hence, PEPs can not operate with
encrypted traffic (e.g., with an encrypted tunnel or using an
encrypted transport, such as QUIC).

C. Endpoint Stretch ACKs

ACK processing can consume as much as 20% of CPU
cycles in server applications [6]. Many high rate network
cards therefore use Large Receive Offload (LRO), to reduce
per-packet receive processing. Hardware-agnostic approaches
also provide similar functions, e.g., Generic Receiver Offload.
These methods also result in Stretch ACKs [11] and corre-
sponding optimisations have been made to TCP to mitigate
this by including pacing [21], adapting CC algorithms [5] [23],
or using timer-based retransmission.

Although a reduced AR can have benefit, some applications
(e.g., low-rate interactive applications or memory-constrained
senders) can be negatively impacted by delayed or Stretch
ACKs. A sender-controlled TCP mechanism to request an
immediate ACK has therefore been suggested [10].

VII. CHOOSING AN APPROPRIATE QUIC ACK POLICY

Recognising that QUIC can not benefit from ACK Thinning
or PEPs, we present a proposal to change the default QUIC
ACK Policy. This seeks to allow operation over asymmetric
paths without compromising performance. We propose a re-
ceiver default that sends an ACK for at least every 10 packets,
while maintaining a minimum number of ACKs per RTT to
ensure frequent sender updates.

If slow start is a part of the CC method, performance may
benefit when an ACK Frame is sent for at least every 2nd
ACK-eliciting packet during slow start (AR 1:2), especially
for a small path RTT. This ensures Stretch ACKs do not
significantly impact the initial rate of cwnd growth. This
mimics DAASS in TCP and could, for instance be used for
the first 100 received packets.

After slow start, an ACK would be sent when a period more
than MIN(max ack delay,min rtt/4) has passed since receiv-
ing the oldest unacknowledged data or it has accumulated 10
unacknowledged packets.

Figure 2a shows how AR 1:10 scales the volume of each
component of the ACKs by a factor of 5 when there is no link
loss. Figure 2b shows that AR 1:10 can reduce the volume of
ACKs even with 1% forward path loss. The increased ACK
size for Quicly is attributed to ACK ranges sent after loss.
Similarly, forward path loss with TCP results in ACKs with
SACK information, increasing the size of the TCP header.

QUIC sends an immediate ACK after reordering with ACK
range information, increasing the volume of ACK information.
Research continues to examine whether removing this will
have a significant impact on performance.

Our choice to use an AR 1:10 is balanced by the existing
need for QUIC to pace traffic, which is already required for
bursts of the order of 10 packets (QUIC’s initial window). The
overhead (Figure 1) for AR 1:10 with QUIC is comparable to
that for TCP with ACK Filtering since a QUIC ACK is 1.5-2
times larger than a TCP ACK (see Table II). In this calculation
we assume that ACK Thinning would typically result in a 2-3
times reduction in the TCP ACK rate (Figure 3).

Figure 4 presents the cwnd growth. There are notable steps
in the plot, at the interval of the 600ms path RTT [18]. These

steps are expected to disperse if there were cross-traffic sharing
the bottleneck, or if pacing had been used by Quicly. These
results highlight the similarity in sender behaviour with an AR
1:2 and 1:10, confirming that reducing the ACK rate has not
negatively impacted the CC in this case. This result was also
confirmed with Chromium.

A. Discussion

Sending fewer ACKs or a smaller volume of ACKs, does
not necessarily mean less feedback information at the sender.
Adapting the AR beyond 1:2 may benefit from a change in
the information returned in the ACK. CCs (e.g., BBR) that
use pacing, not ACK-clocking, can require only a few (e.g.,
4, 8) ACKs per RTT for CC. By reducing the number of
network and transport layer headers, there are opportunities
to provide more detailed feedback: the ACK Delay in QUIC;
ECN reception information; detailed loss reports; etc. This
encourages a fresh approach to considering the role of ACKs.

At first glance, it may appear attractive to use a higher AR
(e.g. 1:100). This would have benefit at higher transmission
rates (where it can reduce the processing cost at endpoints)
and for paths with greater asymmetry or cases where protocols
can detect congestion on the return path. However, a higher
value could potentially negatively impact CC, loss recovery,
etc. In many cases, an additional 25% extra delay is unlikely
to be an issue, a sender can still only react after feedback has
been received This motivates our suggestion to ensure ACK
feedback at least each 1/4 RTT.

A higher AR raises additional questions and must consider
the many roles an ACK can play within a protocol. New
methods could provide richer feedback, increasing detail about
packet arrival times in ACKs to help configure pacing, or for
a path capacity probe. More detailed timing can help estimate
the minimum RTT, jitter, etc and help characterise forward
path burst-tolerance, reordering, duplication, etc.

QUIC provides methods that can reconfigure a receiver by
sending an update frame for transport parameters [14]. This
could change the ACK Policy during a connection [13], or
based on CC (as with DCCP CCID-2), but details remain an
area for future experimentation. Changes could also be based
on the application (as suggested for TCP [10]). Our proposal
to change the default AR does not conflict with these methods.

Large service operators could also use this with databases
of path characteristics for each client to optimise their ACK
policy. However, this could result in significant differences be-
tween services, with some having no incentive to compensate
for the characteristics of a particular path, risking low levels
of actual deployment.

VIII. CONCLUSION

ACKs are used in most transport protocols, but different
protocols use different policies, one of which is the choice of
an appropriate ACK Ratio (AR). The ACK policy needs to
balance the need for effectively growing the cwnd at the start
of a connection with the desire to efficiently use the path. This

must consider a range of use-cases: from reducing the per-
packet processing at high-rates within data centres, to reducing
overhead for asymmetric paths.

This paper has discussed the benefits for TCP of deploying
ACK Thinning to compensate for asymmetry in specific net-
work segments. It then reviewed the current method for QUIC
and observed that QUIC this suffers performance penalties
when used over asymmetric paths because of the larger volume
of ACKs and the inability to rely on in-network ACK filtering
deployed for TCP. In response, we propose and evaluate a
change to the QUIC transport specification that would use a
less conservative default ACK Ratio, reducing ACK volume
while retaining or improving performance.

REFERENCES

[1] M. Allman. On the generation and use of TCP acknowledgments. ACM
SIGCOMM CCR, 28(5):4–21, 1998.

[2] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681, Sept. 2009.

[3] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A com-
parison of mechanisms for improving TCP performance. IEEE/ACM
Transactions on Networking, 5:756 – 769, 01 1998.

[4] Cable Television Laboratories, Inc. DOCSIS 3.1 MAC and Upper Layer
Protocols Interface Specification, 10 2019.

[5] N. Cardwell. Linux Kernel: Merge branch: fix stretch ACK bugs in TCP
CUBIC and Reno, 2015.

[6] M. Chan et al. Improving Server Application Performance via Pure TCP
ACK Receive Optimization. In USENIX Annual Technical Conference,
pages 359–364, 2013.

[7] H. Ding and M. Rabinovich. TCP stretch acknowledgements and
timestamps: findings and implications for passive RTT measurement.
ACM SIGCOMM CCR, 45(3):20–27, 2015.

[8] L. Eggert, G. Fairhurst, and G. Shepherd. UDP Usage Guidelines. RFC
8085, Mar. 2017.

[9] H. B. et al. TCP Performance Implications of Network Path Asymmetry.
RFC 3449, Dec. 2002.

[10] C. Gomez and J. Crowcroft. TCP ACK Pull, May 2020. draft-gomez-
tcpm-ack-pull-01. IETF Work in Progress.

[11] V. INC. Performance best practices for VMware vSphere 6.7, 2018.
[12] J. Iyengar and I. Swett. QUIC Loss Detection and Congestion Control,

July 2019. IETF Work in Progress.
[13] J. Iyengar and I. Swett. Sender Control of Acknowledgement Delays in

QUIC, 2020. IETF Work in Progress.
[14] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and

Secure Transport, Jan. 2017. IETF Work in Progress.
[15] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove.

Taking a long look at QUIC: an approach for rigorous evaluation of
rapidly evolving transport protocols. In IMC 2017, pages 290–303, 2017.

[16] H. Kim, H. Lee, and S. Shin. On the cross-layer impact of TCP ACK
thinning on IEEE 802.11 wireless MAC dynamics. IEICE Transactions,
90-B:412–416, 02 2007.

[17] E. Kohler, M. Handley, and S. Floyd. Designing dccp: Congestion
control without reliability. ACM SIGCOMM CCR, 36(4):27–38, 2006.

[18] N. Kuhn, G. Fairhurst, J. Border, and S. Emile. QUIC for SATCOM,
2020. IETF Work in Progress.

[19] S. Landström. TCP/IP technology for modern network environments.
PhD thesis, Luleå University of Technology, 2008.

[20] C. Perkins. RTP Control Protocol (RTCP) Feedback for Congestion
Control in Interactive Multimedia Conferences, Nov. 2019. IETF Work
in Progress.

[21] V. Tran and O. Bonaventure. Beyond socket options: making the Linux
TCP stack truly extensible. In IFIP Networking Conference. IEEE, 2019.

[22] M. Trevisan, D. Giordano, I. Drago, M. M. Munafò, and M. Mellia. Five
years at the edge: Watching internet from the isp network. IEEE/ACM
Transactions on Networking, 28(2):561–574, 2020.

[23] P. Yang. Linux Kernel: Merge branch: fix stretch ACK bugs in
congestion control modules, 2020.

