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Abstract—The Tor network is the largest public deployed
anonymity network using the Internet. While there has been
a longitudinal study into the performance of the network in
progress since 2009, it has only used vantage points in data
centre networks. In this paper we propose modifications to the
performance measurement tool, OnionPerf, to enable its use for
measuring performance from a mobile end-user’s perspective.
We provide initial findings on simulated mobile networks, using
two types of emulated links, using both the public Tor network
and in a private test Tor network.

I. INTRODUCTION

The Tor anonymity network [1] is the largest deployed

public anonymity network on the Internet. It is used by more

than 2 million users each day [2]. On mobile devices it is most

commonly used through Tor Browser for Android1, which has

between 1 million and 5 million installs. Its precursor, Orfox2,

has over 10 million installs. This is evidence that many Tor

clients are using mobile networks.

Despite the popularity and importance of Tor on mobile

networks, there is no study of the performance operating

over mobile networks, largely because of a lack of suitable

tools. This paper explores how OnionPerf3, a performance

measurement tool for the Tor network, can be used to measure

mobile networks. Ahead of measurements using deployed

mobile infrastructure, we provide results on simulated mobile

networks, using two emulation methods. Finally, we discuss

the implications of adapting OnionPerf to measure mobile net-

works and identify changes needed to ensure the measurement

methodology conforms to the best practices for measuring

capacity-constrained networks.

II. BACKGROUND AND RELATED WORK

A. The Tor network

The Tor network comprises over 6500 relays [3] that can

forward traffic for many users at the same time, and can be

part of an arbitrary number of circuits. Each Tor circuit is

a tunnelled connection through three Tor relays, respectively

called the guard, middle and exit. User connections pass,

encrypted, through these three relays before exiting from the

Tor network onto the public Internet [4].

1https://play.google.com/store/apps/details?id=org.torproject.torbrowser
alpha

2https://play.google.com/store/apps/details?id=info.guardianproject.orfox
3https://gitweb.torproject.org/onionperf.git

Fig. 1. An illustration of a connection through the Tor network

The user software, or client, first contacts the Tor Directory

Authorities to obtain a list of available relays. These Directory

Authorities are a group of semi-trusted servers that keep track

of all running healthy relays. Directory authorities periodically

publish a list of all relay addresses. A Tor client will choose

a set of relays from this list to build their circuits when an

application, such as Tor Browser, wishes to make a connection

(Figure 1). The client then incrementally builds a circuit of

encrypted connections through these relays, extending it one

hop at a time. The client negotiates separate sets of encryption

keys for each hop. No individual relay ever knows the com-

plete path that a data packet takes. After passing (encrypted)

through the Tor circuit, the traffic exits unencrypted and travels

to the destination.

Tor uses the transmission control protocol (TCP) for con-

nections from the Tor client to the guard relay, connections

between the relays in the circuit, and the connection from

the exit to the destination. Within the Tor network (including

from the client to the guard) the transport layer security (TLS)

protocol is used between nodes and a Tor-specific protocol is

used end-to-end [5].

Tor also allows users to run, and connect to, Onion Services.

These are self-published services, made available through Tor

relays that act as ”rendezvous points”. A Tor user can connect

to these Onion Services, without knowing the other network’s

identity by establishing a connection to the rendezvous point,

which joins it to the circuit of the Onion Service.
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B. Passive Measurement

The goals of a privacy and anonymity network like Tor are

not easily combined with extensive data gathering, but at the

same time data is needed for monitoring, understanding, and

improving the network. The Tor Metrics project [6] aggregates

passive measurements of capacity used in the Tor network.

Relays in the network collect statistics over a period of

24 hours [7]. Noise is added to some statistics to provide

differential privacy. This data helps understand the rates

achievable within the Tor network, but can only determine

the performance of an “average” client.

When a part of the Tor circuit is carried on a mobile

network, the network characteristics can be different and the

performance therefore also is not the same. The existing data

and tools do not capture mobile network performance.

C. Simple Bandwidth Scanner (sbws)

sbws4 is an active measurement tool designed to measure

the performance of individual relays in the Tor network. It

uses a “two-hop” circuit rather than the traditional “three-

hop” to assign weights to relays to balance load across the

Tor network. sbws therefore does not try to measure the

absolute performance of a relay, but rather the speed of a

relay compared to other relays. While this serves a useful

role in supporting operation of the Tor network, and has an

interesting methodology, it is not suitable for evaluating end-

user performance.

D. Tor and Mobile networks

Many Tor users rely on mobile connectivity, but the service

available varies around the world. Despite efforts by service

operators to improve performance to support streaming me-

dia content and interactive applications, the mobile network

service in many world regions is still limited by second

generation access technologies. As discussed by [8], these

parts of the world are correlated with low political instability,

where anonymity is critical for an end-user.

Mobility scenarios [9] introduce variations in network con-

ditions, which can result in packet loss and higher end-to-end

delays. Service performance over Tor is sensitive to this loss

and is also impacted by network latency, a key performance

parameter for users. Latency can be different in a mobile

context, however, there are currently no latency-related metrics

gathered by the passive measurement.

A correlation was found between packet loss and mobility

and changes in Radio Access Technology, which could induce

temporary loss of service. Typically, in stationary scenarios,

packet loss is less than 1%, but this if often not achieved for

mobile services.

Each Tor relay establishes a single TCP connection to

another relay when a circuit is built. Traffic from all client

connections that take a path over the same two consecutive

relays will be carried using a single TCP connection between

the relays. Consequently, any packet loss, delay or disruption

4https://sbws.readthedocs.io/

to the TCP packets that comprise this flow will affect all

connections sharing that part of the path, cascading the effect

of network impairments down to impact the performance

experienced by users.

Tor treats application-level data as a bytestream, and avoids

dealing with TCP segments. This avoids the inefficiencies

arising from interacting congestion control timers seen when

tunneling TCP over TCP [10]. Tor relays also act like routers.

They have buffers and are subject to bufferbloat, introducing

latency in the Tor network. Bufferbloat is also an issue with

significant impact on tunnels in general [11]. Latency across

mobile networks varies by access technology[12], and is

influenced by many factors. 5G mobile infrastructure promises

to reduce the mobile segment latency, but this is an area where

more experimentation will be required. In another example,

latency can be increased when roaming, because operators

tunnel user traffic back to their home country, increasing delay

proportional to the geographic distance [13].

Encapsulation of an end-to-end transport using TCP in-

volves an additional layer of state, shared by all traffic inside

the tunnel, resulting in performance considerations that need

to be understood. Recent work [11] in the IETF is exploring

the impacts of such TCP encapsulation.

E. Tor Services

A Tor client can make information requests from the public

Internet, or using an Onion Service. In the first case, Tor treats

application connections as bytestreams attached to circuits. In

the second case, both the client and Onion Service circuits

connect at a common rendezvous point, adding another layer

of complexity and overhead to the process. A study of Onion

Service performance [8] in capacity-constrained networks

found the bootstrap process for setting-up Onion Services

takes significantly longer in such networks due to the data

overheads associated with publishing Onion Services, which

needs to be downloaded before building a circuit.

While historically used for Internet browsing, Tor is also

being increasingly used to support real-time interactive ap-

plications, like WhatsApp and Facebook Messenger. These

applications also demand a lower network latency.

III. EXPERIMENT DESIGN

We ran OnionPerf experiments in two emulated scenarios,

modelling EDGE, 3G and LTE network profiles. These exper-

iments were repeated without the link emulation to provide a

baseline test for comparison. The characteristics for the two

different emulated profiles is summarised in Table I.

Parts of these experiments use the public Tor network. We

have been careful to ensure our experiments do not degrade

the security or anonymity properties of the Tor network for

other users. Our experiments do consume bandwidth from

the network, although we operate a relay at the University of

Aberdeen to offset this. We are only measuring traffic that we

have generated ourselves and only from the client, not from

relays in the network.
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Work is in progress in the IETF to document considerations

for safe measurement of live networks [14]. Our measurements

with OnionPerf implement these considerations, and have

contributed to further refining them.

The following subsections describe the mode of operation

of OnionPerf and its traffic generation components, as well as

the setup of the emulated links.

A. OnionPerf

OnionPerf is a software tool currently used to measure Tor

network performance. It uses multiple processes and threads

to download random data through Tor, while tracking the

performance of the downloads, fetched on localhost using

traffic generator processes, and is transferred through Tor using

Tor client processes and an ephemeral Tor Onion Service.

The traffic generator in OnionPerf uses TGen 5, a C appli-

cation that models traffic behavior using an action-dependency

graph. OnionPerf will run a TGen client/server pair that trans-

fer traffic through Tor and through an ephemeral Onion Service

started by OnionPerf. Each TGen node takes a graphml-

formatted file as a parameter, and then begins transferring data

to/from other nodes by following a path through the action

graph. Currently, OnionPerf downloads 50 KB, 1 MB and 5

MB files using a probabilistic weighted action graph.

Tor control information and TGen performance statistics are

logged to disk, and are analyzed once per day to produce a json

stats database and files that can be used to visualize changes

in Tor client performance over time6.

OnionPerf (Figure 2) uses a measure component that con-

trols the flow of all measurements performed by the tool. There

are two measurement options:

• Files hosted on the local machine are downloaded via the

Tor network using only a Tor client. This emulates access

to the Internet via Tor.

• Files hosted as an Onion Service using a Tor server are

downloaded via the Tor network using a Tor client. This

emulates access to an Onion service via Tor.

B. OnionPerf Data

The Tor Metrics team has been operating OnionPerf in-

stances since April 2017, and before that, Torperf instances

since July 2009. The results of these measurements are re-

leased as open data via CollecTor7.

The vantage points used for these instances have been

in datacenters typically with the newest addition, known as

op-ab8, is operated at the University of Aberdeen. These

vantage points have much higher capacity and lower latency

than available to a typical mobile user.

In the earlier days of the Tor network, performance would

change from day to day, as can be seen in Figure 3. Since

5https://github.com/shadow/tgen
6https://metrics.torproject.org/torperf.html
7https://metrics.torproject.org/collector.html#torperf
8“ab” in this case is a pseudo-country code for Scotland, based on the

Scottish Gaelic name, Alba.

Fig. 2. The main OnionPerf components. Measurements are started via the
CLI, and produce logs for analysis. As a part of the measurement process,
OnionPerf stars a Tor client, a TGen client, a TGen server and optionally a
Tor server.

Fig. 3. Time to complete a 5MB download via a Tor exit circuit between
2009 and 2017.

around 2014, there has been less variation as the network ma-

tured. Recent measurements from the four current OnionPerf

deployments are shown in Figure 4.

C. Link emulation

In the first experiment, we ran OnionPerf from within chut-

ney, a tool for creating test (private) Tor networks complete

with emulated links between the test nodes.

The second experiment used netem to emulate connection

parameters between the OnionPerf measurement host at the

University of Aberdeen and the public Tor network.

1) Chutney: Chutney9 is a Tor project tool for creating test

networks, it handles configuring and launching of configurable

Tor networks and the execution of tests on these networks.

Chutney emulates an entire Tor network by using a network

configuration file which describes the Tor network nodes to

be created. For our setup, we used the simplest Tor network,

9https://github.com/torproject/chutney/blob/master/README
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Fig. 4. Time to complete a 5MB download via a Tor exit circuit between
February and May 2019.

Name Downlink
band-
width

Units Downlink
delay
(ms)

Uplink
band-
width

Units Uplink
delay
(ms)

EDGE
(2.5G)

240 kbps 400 200 Kbps 440

3G 780 kbps 100 330 Kbps 100
LTE 50 Mbps 50 10 Mbps 65

TABLE I
MOBILE NETWORK LINK CHARACTERISTICS BASED ON NETWORK LINK

TECHNOLOGY

created from two directory authorities, one relay and one client

node. The tor instance associated with each node starts in its

own network namespace, meaning each tor process launched

with Chutney has its own network stack that can emulate

different link characteristics.

Chutney allows for different characteristics to be described

as “profiles” at configuration setup. The link characteristics

supported for emulation purposes are drop rate, bandwidth,

and delay. These can be varied to emulate different types of

links. For example, a Chutney configuration file can describe a

3G profile (Figure 5). This comprises three Directory Author-

ities and five Exit relays. There was no additional load traffic

added to the test network. The setup used network profiles for

emulating a range of links (Table I). The OnionPerf client ran

from within Chutney to perform 10 downloads for each profile

in the test network.

2) Netem: Chutney emulates not just the link properties of

connections between clients and nodes in a Tor network, but

also creates the nodes themselves. As such, it is a great testing

tool but limited in predicting performance in a live, public

network. We used Netem to emulate different link properties

for the connection between the OnionPerf client and the

public Tor network. Netem10 uses Linux traffic control (TC)

facilities to emulate network characteristics to the outgoing

packets from a selected network interface. Netem is built using

the existing Quality Of Service and Differentiated Services

facilities in the Linux kernel. Similarly to veth interfaces,

10http://man7.org/linux/man-pages/man8/tc-netem.8.html

# 3G profile
profile = {

"uplink":{"drop_rate":0, "bandwidth":330, "delay":100},
"downlink":{"drop_rate":0, "bandwidth":780, "delay":100}

}

# By default, Authorities are not configured as exits
Authority = Node(tag="a", authority=1, relay=1,

torrc="authority.tmpl")
ExitRelay = Node(tag="r", relay=1, exit=1, torrc="relay.tmpl")
Client = Node(tag="c", client=1, torrc="client.tmpl",

network_profile=profile)

NODES = Authority.getN(3) + ExitRelay.getN(5) + Client.getN(1)

ConfigureNodes(NODES)

Fig. 5. Chutney emulated 3G network. A network profile is added to the client
template. The parameters in this profile are used by the network emulator to
enforce these network characteristics.

netem can virtualise properties of a real network interface,

including variable delay, loss, duplication and re-ordering.

The outgoing interface of the OnionPerf measurement host,

a VM hosted by the University of Aberdeen, was modified

with netem to perform network emulation for this experiment.

This interface was used by the OnionPerf client to connect

to the public Tor network and perform 10 measurements with

each of the profiles shown in Table I.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Measurements using real network stacks can help under-

stand the impact of access technology on connection perfor-

mance, with the potential to improve current and future designs

of the Tor protocol stack. In this section we present the results

obtained for each of the simulated scenarios described above.

In addition, we compare these to an initial study using a real

cellular network stack. Figures 6 and 7 present the median

time to download a 5MB object over the Tor network using the

emulated network profiles. Each figure also presents baseline

results for downloads on a data centre network link, emulated

with each respective tool as a 1GB connection with no delay

or loss.

To perform an initial study using a real cellular network, a

Tor client was configured with guards disabled and a series

of 5 MiB downloads were attempted via the public Tor

network from a server hosted in the Amsterdam Digital Ocean

datacenter. Of the set of downloads that completed, the average

time to complete a download was 381 seconds, resulting in an

average rate of 110kbps. The time to complete a download

varied considerably, between 275 and 537 seconds, shown as

a boxplot of the download times in Figure 8. This figure also

presents the real cellular results side-by-side with the emulated

results for EDGE networks. The median download time is

higher in the real network versus its emulated counterparts,

with more download time variability. The simulated measure-

ments behave in a more deterministic fashion, and present

optimistic download times compared to the measurement taken

in a real environment. The emulated network measurements

can therefore be regarded as ’best-case scenarios’. In the case

of Chutney, the Tor network has no load, while netem can
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Fig. 6. Time to download 5242880 bytes, all downloads

Fig. 7. Time to download 5242880 bytes, all downloads

Fig. 8. Time to download 5242880 bytes, via an EDGE network (completed
downloads only)

only simulate delay, capacity limits and packet loss using

averages - real mobile networks present a higher variation

across their characteristics, with results depending on time of

day, cell load, propagation conditions, etc. While the simple

methodology described above allows us to directly compare

download times with the simulated EDGE network OnionPerf

data, it does not provide the rich logging of the latter. In

the future, measurements on real networks will be performed

by OnionPerf, which provides detailed logging of Tor client

and server behaviour, allowing for a nuanced analysis of the

penalty on performance when building and extending Tor

circuits, in addition to measuring the download performance.

A. Adapting OnionPerf for mobile platforms

The primary limitation to using OnionPerf on mobile plat-

forms is that the tool consumes significant capacity when

used to perform measurements, over 20GB of data per month.

Mobile operators (and consequently, mobile measurement plat-

forms) usually apply data volume limitations as a part of the

purchased data plan. The authors therefore recognise that the

methodology needs to be updated to reduce the volume of

test data required to provide acceptable measurements using

deployed mobile clients. A different size of transfer could be

considered, as well as adding a delay between measurements.

To achieve this, we plan to modify the TGen specifications for

the download graph used by OnionPerf to tune both download

sizes and time to wait between transfers. An alternative option

could be to utilise a single larger download and to record a

series of partial completion times as the download progresses,

although this may result in less measurement diversity. On

average, the 5M measurements represent 65% out of the total

bytes Onionperf downloads as part of its normal operation,

but only 5% of attempted downloads. For example, recording

partial completion times on 5M files could result in a reduction

of roughly 7GB a month - whereas, skipping these large

downloads altogether and recording patial completion times

from 1M downloads would bring the consumed data to a more

manageable 5GB per month.

OnionPerf is inherently limited by how it operates - when

performing downloads via the Internet, the traffic generator

component requires measurement hosts to use a public IP

address in a network that allows access to a port exposed by

OnionPerf. This is not feasible for a typical mobile scenario,

because the address of a measurement host would either be

NAT-ed or limited by a firewall that is not under the control

of the person making the measurements.

OnionPerf could be modified to listen for incoming con-

nections on a different interface on measurement hosts con-

nected via multiple interfaces. This can be implemented by

modifying the traffic generation component, Tgen, to serve

data on a separate interface. This software modification, will

allow OnionPerf to run on mobile measurement platforms

using dedicated multi-networked hardware, such as the MON-

ROE platform [15]. This distributed measurement platform

comprises over 200 nodes using over 10 mobile European

broadband operators,and is made available to researchers on
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an Experiment-as-a-Service basis. The platform nodes run a

stripped-down version of Debian Linux and Docker to run

mobile measurement experiments in a containerized fashion.

OnionPerf is a self-contained tool which could be easily

adapted to run in a Docker container, making it a perfect

candidate for use on MONROE.
Finally, OnionPerf is designed to match a real client’s

behavior as far as possible. In this way it is similar to a

black box and doesn’t allow for observation of how the access

link, the individual relays, or buffers, are contributing to the

performance measurement. As it currently exists, OnionPerf

can only validate that a change made, such as varying the

access technology, results in either an improvement or re-

duction in performance but cannot identify where exactly

that improvement or reduction has been made. This approach

allows for safe measurement of the live Tor network without

posing risks of harm to other users of the Tor network, with

the downside that degradation in mobile network performance

be distinguished from degradation in the Tor network.

B. Exploring Loss Recovery and Latency
While Tor performs tunelling of bytestream application data

over TCP, multiple bytestreams may be multiplexed over a

TCP stream. The Tor protocol implements both circuit-level

and stream-level congestion control maintaining windows for

the maximum number of data cells that can be in-flight

without the receiver requesting more cells be sent. Stream-

level congestion control is required because streams may have

different destinations once they leave the Tor network, even

though they are carried on the same circuit while within the

network. As this congestion control is built on top of the

existing congestion control mechanisms of TCP, any disruption

in one of the flows can affect the end-to-end performance for

the circuit. A new proposal revolving around multiplexing over

QUIC [16], MASQUE (Multiplexed Application Substrate

over QUIC Encryption) has the potential remove some of the

head-of-line blocking and impact of loss recovery created by

layering a tunnel over TCP/TLS, but has yet to be evaluated.

Its design could inform future Tor protocol design and could

in future make it more resilient on mobile networks.

V. CONCLUSION AND NEXT STEPS

The Tor network presents a unique point of study where

mobile networks are concerned, due to its encrypted and

layered nature. There have been very few studies on how

the access technology used by this network impacts perfor-

mance from an end-user perspective. We have explored the

challenges in using OnionPerf, a tool historically used to

measure download performance through Tor from data centres,

for measuring mobile networks and provided suggestions for

its improvement. The authors plan an implementation of an

updated tool and methodology that will enable a longitudinal

measurement study to explore performance from several mo-

bile vantage points, using a range of access technologies, and

traffic-modelling of popular content browsing.
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